Brief information about the project

Name of the project	AP14972391 «Investigation of exotic states of 1p shell nuclei» (0122PK00739)
Relevance	In recent years, the study of light, weakly bound nuclei has not lost interest due to the successful development of experimental techniques. It is known that nucleons in light nuclei tend to group into clusters, the relative motion of which mainly determines the properties and characteristics of the nuclei under study. Exotic states in most cases have a sparse structure and increased size, reflected in root-mean-square radii. Such peculiar properties are manifested, for example, in the second excited state of the ¹² C nucleus 7.65 MeV, which, in the framework of many well-known models, has a cluster structure. A similar behavior is also predicted for excited states in the ¹¹ B and ¹³ C nuclei, possibly also having Hoyle states.
	Another most interesting phenomenon in nuclear physics is also the discovery of a neutron halo in some neutron-rich light nuclei. Until recently, the neutron halo was observed almost exclusively in the ground states of some radioactive nuclei. In ⁹ Be and ¹³ C nuclei, such states are known near neutron thresholds (states 1/2+, 1.68, and 3.09 MeV, respectively).
Purpose	The aim of the project is experimental and theoretical study of exotic excited states of light nuclei ⁹ Be and ¹³ C. Determination of new parameters and characteristics of the excited exotic state by analyzing it based on folding and modified diffraction models.
Objectives	 measurement of differential cross sections of elastic and inelastic scattering, at the energy of incident deuterons of 14.5 and 18 MeV and helium isotopes (³He and ⁴He) 30 and 40 MeV on ⁹Be and ¹³C nuclei in a wide angular range. analysis of the resulted differential cross sections for elastic and inelastic scattering of deuterons on ¹³C nuclei within the framework of the optical model and the modified diffraction model to determine optimal parameters of the optical potential and the values of the root-mean-square radii of excited exotic states of 3.09, 8.86 and 9.9 MeV; analysis of the resulted differential cross sections of elastic and inelastic scattering of helium isotopes (³He and ⁴He) on ⁹Be nuclei within the framework of the optical model and the optical model and the modified diffraction model to determine of elastic and inelastic scattering of helium isotopes (³He and ⁴He) on ⁹Be nuclei within the framework of the optical model and the walues of the root-mean-square radii of excited exotic states of 1.68 MeV.
	All three tasks will provide new information about root- mean-square radii and about interaction of accelerated

	1
	stable deuterons and nenum isotopes with 'Be and "C
	nuclei.
Expected and achieved results	During the implementation of this project, the following
	results are expected:
	- differential cross sections ${}^{13}C(d,d^*){}^{13}C$ will be measured
	at $E(d) = 14.5$ and 18 MeV;
	- differential cross sections of reactions ⁹ Be(³ He, ³ He*) ⁹ Be
	and ${}^{9}\text{Be}({}^{4}\text{He}, {}^{4}\text{He}*){}^{9}\text{Be}$ will be measured at energies of 30
	and 40 MeV;
	- new rms radii of exotic states (3.09, 8.86 and 9.9 MeV)
	of the ¹³ C nucleus at low energies will be determined
	within the modified diffraction model:
	- a new root-mean-square radius of exotic states (1.68
	MeV of the ⁹ Be nucleus at low energies of 30 and 40 MeV
	will be determined within the modified diffraction model
	will be determined within the modified diffraction model.
	The databases required for local scientists and EXEOP will
	he expended
	be expanded.
Research team members with	1. Valiolda Dinara, PhD, h index – 3, Scopus author
their identifiers (Scopus Author	ID: 56165917100, ORCID: 0000-0003-2969-3720.
ID, Researcher ID, ORCID, if	2. Janseitov Daniyar, PhD, h index – 6; Scopus Author ID:
available) and links to relevant	56161954400, ORCID: 0000-0002-8355-3131.
profiles	
List of publications with links to	
them	
Patents	-